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In  this paper we obtain an explicit representation for the unsteady motion on a trans- 
versely sheared mean flow that corresponds to the gustline motion on a uniform mean 
flow. The important features of this motion are discussed. It is shown that its velocity, 
pressure and vorticity are all induced by a certain disturbance field that is a linear 
combination of the vorticity and particle-displacement fields and is everywhere frozen 
in the mean flow. The general ideas are illustrated by considering the scattering of a 
gust by a half-plane embedded in a shear flow. 

1. Introduction 
In an inviscid non-heat-conducting compressible fluid the small amplitude unsteady 

motion about a steady mean flow is governed by the linearized gasdynamic equations. 
The general character of this motion is well underst.ood in the case where the steady 
mean flow is uniform, i.e. where the mean velocity is a constant (see Carrier & Carlson 
1946; Kovasznay 1953; Chu & Kovasznay 1958). In  these flows the unsteady motion 
is simply the sum of two disturbances: (i) a frozen (i.e. purely convected) distur- 
bance or mode that has zero divergence (i.e. it is entirely vortical), has no effect on 
the pressure fluctuations (apart from the coupling that occurs a t  any solid boundaries 
that may be present) and is often called a gust in unsteady airfoil theory; (ii) an irrota- 
tional disturbance that is directly related to the pressure fluctuations and is, as a 
result, connected with any acoustic-type motion that may occur. We therefore refer 
to the latter disturbance as acoustic though we realize that it will occur even when the 
fluid is incompressible. Since these two modes of motion are coupled only a t  the bound- 
aries of the flow, each of them must, by itself, be a solution to the linearized gasdynamic 
equations. (A simple proof of these results is given on pp. 220 and 221 of Goldstein 
1976.) 

The next simplest situation is when the steady mean motion is a transversely 
sheared flow. Here the mean velocity has the same direction at  every point of the flow 
but its magnitude can vary from point to point in any plane that is perpendicular to 
this direction. Such a flow will satisfy the inviscid non-heat-conducting equations 
of motion if we require that the pressure be everywhere constant and that the density 
remains constant along the surfaces of constant mean velocity. (See pp. 6-10 of 
Goldstein (1976) for details. The most familiar examples of such flows are the two- 
dimensional shear flows that are studied in the theory of hydrodynamic stability.) 

The character of the unsteady motion on transversely sheared flows is considerably 
more complex than it is when the mean flow is uniform. Here the pressure and 
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vorticity fluctuations are coupled and there are no velocity fluctuations that are 
convected with the mean flow. In  fact, even the unsteady vorticity perturbation does 
not have this property. Part of the purpose of this paper is to sort out the nature of 
these flows. 

We recognize at the outset that we cannot hope to decompose the unsteady motion 
into acoustical and vortical parts a t  all points of an arbitrary transversely sheared 
mean flow. However, the major usefulness of this decomposition is connected with 
the formulation of boundary-value problems associated with the ‘scattering ’ of one 
of these types of motion into another by solid surfaces or other types of boundary 
placed within a uniform mean flow. In  problems of this type we are frequently 
interested in flow fields that extend to infinity in a11 directions, in which case it is 
sufficient to be able to distinguish the vortical motion far upstream from the region 
containing the scattering surfaces. 

It will be shown subsequently that the linearized equations for a transversely 
sheared mean flow possess a solution whose vorticity field is frozen in the flow far 
upstream and, in fact, exhibits a number of other characteristics of the uniform flow 
vortical solution in the rest of the flow. We should like to show that this solution is the 
natural generalization of the uniform mean flow gust solution. This can be done if we 
can extract certain properties of the uniform flow gust solution which are just sufficient 
to determine this quantity uniquely and which are also possessed by and are just 
sufficient to determine uniquely the transversely sheared A ow solution alluded to 
above. However, the decomposition of the unsteady motion on a uniform flow into 
acoustical and vortical parts is not unique. This is because the linearized equations 
possess solutions that have the properties of both the acoustic and the vortical 
solution. But (as shown in 2) there will be only one vortical solution which will be 
both bounded (i.e. fmite) at infinity and continuous at all points of space and this 
solution will be uniquely determined by the upstream vorticity distribution. Since 
we usually think of the incident gust or vortical mode in a scattering problem as the 
portion of the motion that would exist if no scattering surfaces were present, it is 
reasonable to define the vortical component of the solution in a unique fashion by 
adding the slight additional requirement that it be everywhere continuous and 
bounded. 

In  5 2 we show that the uniform mean Aow vortical solution described above can 
be uniquely characterized by a certain minimum wavenumber bandwidth property. 
In  0 3 we construct a solution to the linearized gesdynamic equations for a transversely 
sheared mean flow that is also uniquely characterized by this minimum wavenumber 
bandwidth property. We therefore call this solution a gust. It turns out that it is 
composed entirely of waves that move downstream in the mean flow direction with 
velocities lying between the maximum and minimum flow velocity and aa in the 
uniform mean flow case is uniquely determined by the upstream vorticity distribution. 

The general properties of the gust are discussed in 5 3.3. It is shown that the complete 
solution to any given problem involving the scattering of an incident vorticity field 
will be the sum of two solutions, one of which (the gust) is uniquely determined by the 
upstream vorticity distribution and is independent of m y  solid surfaces and acoustic 
Sources that may be in the flow. The remaining portion will then arise from thescattering 
or reflexion of the gust by any solid surfaces that may be present or from any acoustic 
sources or incident acoustic waves (which, as we shall show, can be distinguished from 
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the vortical motion far upstream) that may be imposed on the flow. The latter solution 
can therefore be referred to as the acoustic portion. 

It is also shown in 5 3.3 that the pressure, velocity and vorticity fields of the gust 
can be thought of as being induced by a certain disturbance field that is everywhere 
frozen in the flow and convected downstream at the local mean flow velocity. This 
quantity is shown in $ 5 to be a simple linear combination of the vorticity, pressure 
and particle-displacement fields. 

The limiting behaviour of the gust solution as the mean flow velocity becomes 
everywhere constant is discussed in $4. It is shown that the expected reduction to 
the constant mean flow vortical mode behaviour (described above) is indeed achieved. 
However, the frozen vorticity in the mainstream does not, in general, approach the 
imposed upstream vorticity distribution as the streamwise co-ordinate x goes to infinity 
in the upstream (i.e. negative) direction unless the constant mean flow limit is ap- 
proached in a certain fashion. This non-uniform behaviour is shown to result from the 
fact that the limit x-+--oo cannot be interchanged with the limiting operation in 
which the mean flow Mach number distribution becomes constant. Such non-uniform 
limits are, of course, quite common in fluid mechanics, the best known of these being 
the one associated with the boundary layer, which arises because the limit of infinite 
Reynolds number cannot be interchanged with the limit where the normal surface 
co-ordinate approaches zero (Cole 1968, pp. 142ff.). 

In  $ 6  the general ideas are used to study the scattering of a gust by a semi-infinite 
plate in a non-uniform mean flow. Simple formulae for the far-field pressure fluctuations 
are obtained in the long-wavelength limit (i.e. when the wavelength of the gust is 
long compared with the transverse extent of the mean flow). The convective effects 
are explicitly exhibited in terms of Doppler factors. The directivity patterns are 
compared with those resulting from an approximate calculation based on a con- 
ventional free-space zero mean flow dipole model. 

2. The gust solution on a uniform mean flow 
In  this section we construct the vortical solution for the small amplitude unsteady 

motion on a uniform (i.e. constant velocity) mean flow. We then show how this result 
can be uniquely characterized in a way that can be generalized to the case of a trans- 
versely sheared mean flow. 

As indicated in the introduction, we suppose that the flow extends to infinity in all 
directions and, in order to simplify the presentation, we suppose that the motion is 
two-dimensional. The properties of the gust or vortical solution given in the intro- 
duction imply that its pressure p g  and x and y velocity components ug and vg, res- 
pectively, must satisfy 

(2.1) 1 (i + co M 2) (".) = 0, frozen disturbance condition, ax vg 

aug/ax + avg/ay = 0, zero-divergence condition, 

p g  = 0, constant pressure condition, I 
where cg is the mean speed of sound, M is the constant mean flow Mach number, x 

11-2 
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denotes the co-ordinate in the mean flow direction and y denotes a co-ordinate trans- 
verse to this direction. The associated vorticity is 

u, = avglax - augiay. 

We are, for the most part, interested in motions that persist for all time and not 
in the effects of initial transients or instabilities of the flow that grow with time. 
Thus without loss of generality we can restrict our attention to the case where the 
unsteady motion has harmonic time dependence, so that the fluctuations in pressure, 
vorticity and tmnsverse and axial velocity are of the form 

(2.2) 
vg = V,(x, y )  e-iwt, u, = Eg(x, y )  

p ,  = pg(x, y )  e-i*t, wg = Zg(x ,  y) e-"t 

respectively. 

tinuous at all points is given by 
It is easy to show that the most general harmonic solution to (2.1) that is con- 

p ,  = 0, (2.3) 

v, = r ( y ) e i k z / ~ ,  z, = o(y)eikxiM, (2.4a, b)  

where 

Ply) = - [ ekvjMJvm e-kg/M12(q) dq + e--ku/M e k d M  Q(q) dq + Q, ekviM+ C, e - W M ,  
2 /Irn I 

r ( y )  = -5 i [ e k V / M /  e - k g / M n ( q ) d r l + e - x v / ~ ~ ~ ~  ekq/MR(q)dq].  

k = w/co, R(y) can be any continuous function of y ,  and C, and C, are arbitrary con- 
stants. But this solution will be bounded (i.e. finite) a t  infinity only if R(y) is bounded 
a t  infinity and C, = C, = 0. Consequently, 

m 

(2.7) v W 

Thus when the motion is harmonic, the most general continuous bounded vortical 
solution for the unsteady motion on a uniform flow is given by (2.2)-(2.7). It is deter- 
mined everywhere in the flow by the upstream transverse vorticity distribution Q(y) 
and has the form of a wa.ve travelling in the mean flow direction with a propagation 
speed equal to the mean flow velocity co M .  I t  therefore has the single axial wavenumber 
k/M for each frequency w .  The remaining portion of the solution to the linearized 
gasdynamic equations, i.e. the acoustic part, will contain axial wavenumbers lying 
between plus and minus infinity. Since this latter portion is irrotational, it can be 
added to the vortical solution without altering the upstream vorticity distribution. 
Thus there are many solutions that are consistent with any imposed upstream vorticity 
field but the vortical solution is distinguished from the rest of these by virtue of its 
being the continuous bounded solution that has a smaller axial wavenumber band- 
width than any other such solution. 

The solution for a, general time-dependent motion (of the type alluded to above) 
can, of course, be obtained by superposing solutions of type (2.2) covering all the 
frequencies that comprise the motion. The gust (i.e. vortical) solution is still uniquely 
characterized as the everywhere continuous bounded solution that will have the smallest 
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possible bandwidth of axial wavenumbers at any given frequency and still produce a 
prescribed upstream vorticity distribution. In  the next section we show that this char- 
acterization can be extended to transversely sheared mean flows. 

Equation (2.7) can also be written as 

f 7 Y )  = A s m  22 exp(-kly-rlJ/M)R(rl)d7]. 

This result taken togethei with ( 2 . 2 )  and (2.4)-(2.6) shows that the velocity field of the 
gust is induced by the transverse distribution R ( y )  exp [ i (kx /M - wt)] of convected 
disturbances that comprise the vorticity field and that the effect of each of these 
disturbances is diminished by an exponential damping (or transmission) factor 
exp (-kJy-r]l) that depends only on the transverse distance between the elemental 
vorticity disturbance and the point where the velocity is observed. 

3. Gust solution for transversely sheared mean flows 
In  order to simplify the presentation we restrict our attention to constant-density 

parallel shear flows, i.e. to mean flows that vary in a direction perpendicular to a 
plane (say the x,z plane). However, most of the results will apply with more or less 
obvious modifications to a general transversely sheared mean flow. 

As in the previous section, we suppose that the motion is two-dimensional and for 
the reasons given in that section we restrict our attention to the case where the un- 
steady motion has harmonic time dependence. Then the fluctuations in pressure and 
transverse and axial velocity are of the form 

v = @(x, y )  e - i w t ,  

where x still denotes the co-ordinate aligned with the mean flow, which we can suppose 
without loss of generality (by subjecting the problem to a Galilean transform if 
necessary) to be always in the + x  direction, while y is the transverse co-ordinate in 
whose direction the mean velocity variation takes place. It is shown in books on 
stability that the axial Fourier t,ransforms of these quantities (which are appropriate 
here because the flow is assumed to extend to infinity) 

p = p(x,  y )  e-iat, u = E(x, y )  e-iot, 

and 

satisfy the coupled set of first-order ordinary differential equations (Retchov & 
Criminale 1967, p. 176) 

P' = ipo co( k - a M )  V ,  (3.2a) 

aP = p o c o [ ( k - a M )  U-t iM'V] ,  (3 .2b )  

( 3 . 2 ~ )  (k - a M )  P = po c,(aU - i V') ,  



310 M .  E .  Goldstein 

where the primes denote differentiation with respect to y, po and co are the mean 
density and speed of sound, M = M ( y )  is the mean flow Mach number and as before 
we have put k = w/co. It is well known from the theory of hydrodynamic stability of 
compressible flows (see, for example, Betchov & Criminale 1967, pp. 175-177) that 
any two of the dependent variables can be eliminated from these equations to obtain 
a single second-order equation for the remaining variable. Each of the resulting 
equations possesses two linearly independent solutions, which we shall denote by using 
subscripts on the letters P, U and V .  Of course, the solutions to any two different 
equations are not independent of one another but rather are connected through (2.2). 
Thus any given solution to the equation for P will generate a unique solution to the 
equation for V and a unique solution to the equation for U .  We denote such triples of 
corresponding solutions by using the same subscript on the three letters P, U and V .  

3.1. Properties of the solutions to (3.2) 

The general character of the solutions to (3.2) is easily deduced from the theory of 
ordinary differential equations and has already been studied in connexion with the 
theory of hydrodynamic stability. We shall state here certain of their properties that 
will be needed in the following development. Thus let yo denote the point where 
M ( y )  = k/a .  Then if M ( y )  is not constant (3.2u-c) possess one solution, say 

(3.3) 

(3.4a) 

= O(aM- k )  = O(y-yo) as y+yo. (3.4b) I p; 
') = ipo co(k - aM) 

(3.4c) 

Let 2, = {P2, V,, U,} denote a solution which is linearly independent of 2,. If M" 
is not identically zero in some entire neighbourhoodt of yo, the equations for P, U and 
V will each have a regular singular point at yo and P,, V, and U, will be of the form 

V,(a,y) = a ' + b ' ~ ( a , y ) l n ( a M - k ) + O ( a M - k )  as y+yo, (3.5) 

P2(a, y) = a + bPl(a, y) In (aM - k) + O(aM - k )  

UJa, y) = a" + b"Ul(a, y) In (aM- k )  + O(aM- k )  J 
where a, a', a", b, b' and b" are constants. 

If the shear layer is symmetric about some plane, say y = 0 (i.e. if M (  - y) = M ( y ) ) ,  
the solutions (3.3) will reflect that symmetry and, as shown in appendix A, we can 
write 

zl(a,y) = {Pl(a,lyl) ,(sgny)~(a,(y(),  Ul(a,(yl)} for M(-y) = M(y). (3.6) 

t If Ma 0 in some neighbourhood of yo only the equations for P and V will have regular 
singular points since yo will be an ordinary point of the equation for U .  However, none of the 
three solutions P,, V, and U, will then contain a logarithmic term. 
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FIGURE 1. Parallel shear flow. 

Apart from the two sets of classical solutions (3.3) and ( 3 4 ,  (3 .3~-c)  possess a 
third, generalizedt (weak) solution which (even when M" = 0) can be written as 
(Stakgold 1967) 

zi(a, Y)  H ( a M -  k )  = {P,(a, Y )  H ( a M -  k) ,  K(a, y) H ( a M -  k) ,  Ui(a, y) H ( a M -  k)) ,  
(3.7) 

where H denotes the Heaviside function: H ( x )  = 1 for x > 0 and H ( x )  = 0 for x < 0. 
This can easily be verified by substituting the first component of (3.7) into the equation 

P " - E  P ' + [ ( a M - k ) 2 - a 2 ] P  = 0 
a M - k  

for P (which is obtained by eliminating U and V between (3.2a-c); see Betchov t 
Criminale 1967, p. 177), using ( 3 . 4 ~ )  together with the well-known relations for the 
delta function S(x)  = H'(x)  [f(z) 6(x) = 0 whenf(z) = O(x)  as x+ 01 and z#(z) = - 6(x) 
and then determining the corresponding solutions for V and U from (3.2). We could, 
of course, just as well start with the equation for V or the one for U. 

When the mean flow is uniform the upwash velocity Fourier transform satisfies the 
equation 

which is obtained by eliminating P and U between (3.2a-c) while taking care not to 
divide through by k - a M .  Since M is now constant and xS(x)  = 0 this equation 
possesses the generalized solution S(k - a M ) f ( y ) ,  where f is an arbitrary function 
of y. Taking the inverse Fourier transform of this quantity, we fkd  that it is precisely 
the solution that gives rise to the gust or vortical mode (2.4) for a uniform flow. We 
shall now show that (3.7) is the corresponding generalized solution that constitutes 

t Such solutions satisfy the differential equations in the sense of a distribution rather than 
pointwise. However, they must be considered to obtain the complete set of solutions whenever 
the equations are the result of taking Fourier transforms. Solutions of this type were used in a 
related context by Case (1960). They are sometimes characterized aa belonging to the discrete 
spectrum of the differential equations. 

(k -aM)(V"+[ (k -aM)2-a2]  v) = 0, 
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the primary component of a gust on a sheared mean flow. The change in character 
of the singular behaviour (from a delta function to a step function) results from the 
fact that the convected disturbances in a shear flow muat consist of a range of wave- 
numbers for each frequency rather than a single wavenumber as they do when the 
flow is uniform. 

As indicated in the introduction, we shall take the shear layer to be doubly infinite 
in the y direction and we shall suppose, in order to fix ideas, that the mean velocity 
becomes uniform (i.e. approaches a constant value) at  large values of y and has a 
single maximum or minimum at some point within the layer, which we take without 
loss of generality to be y = 0 (see figure 1) .  Other cases of interest, which involve shear 
layers with monotonic velocity profiles or shear layers that are bounded on one or 
both sides by parallel walls, are actually easier to treat but will not be considered 
because they do not involve all of the features of the present example. 

Apart from the singnlar solutions, equations (3.2) possess a set of solutions, say 

that is a linear combination of the two linearly independent regular solutions Z, and 
Z, (since each component of Z satisfies a second-order differential equation which 
can have a t  most twc linearly independent solutions) and behave either like outgoing 
waves or decay exponentially at  large distances from the shear layer where the flow 
is uniform (i.e. they satisfy a radiation condition in this region; see Betchov & 
Criminale 1967, pp. 178-179). However, we shall in general have to allow these 
solutions to have a discontinuity a t  some point within the shear layer if they are to 
have outgoing-wave behaviour on both sides of this layer. We can always suppose 
that this discontinuity is a t  y = 0. Thus, when the mean flow is completely uniform, 
the outgoing-wave solutions can be taken as 

z, = {pocoA exp iyl y 1, sgn yexpiYlyI )/(k - a W ,  expi7)y I )/(k - aW} ,  
(3.9a) 

where the branch of the square root 

y E [(k-aM)Z-a2]9 (3.10) 

is so chosen that its imaginary part is positive when its argument is negative and A 
is an arbitrary constant. 

In  the general case Z, will always have the representation (3.9a) in the uniform 
flow region at large distances from the shear layer. The asymptotic representation of 
another solution, say Z,, that is linearly independent of Z, can be obtained by replacing 
7 by -7; it will represent an incoming wave in the range of wavenumbers where 7 
is real while otherwise it will be unbounded, i.e. infinite. Then when the shear layer is 
symmetric about y = 0 we can apply the same symmetry to arguments to Z, and Z, 
as were applied to Z, and Z, to develop the representation (3.6) and thereby show 
that Z, can be represented as 

(3.11) 

3.2. Construction of gust solution 
We shall now use the results of the previous section to construct the gust solution 
for a transversely sheared mean flow. To this end we notice that, since (3.7) and (3.9) 
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satisfy the transformed equations (3.2), it follows from (3.1) and (3.3) that the linearized 
gasdynamic equations possess a solution, say 

klM 5 -is 
ei@zB*(a)Z,(a, y ) d a ,  y 2 0, (3.12) s k/M.-is  

klM* 

k / M ( v )  
Cu(x, y )  = 1 eiaxA*(a) &(a, y )  da + 
where the notation is meant to indicate that the plus (upper) signs apply when y > 0 
and the minus signs apply when y < 0, A* and B* denote, as yet, arbitrary functions 
of a, 8 is a small positive constant that can be set equal to zero after the contour 
integrals have been evaluated, M, is the Mach number a t  y = 0, and Mi denote the 
limiting Mach numbers as y-+ f co (see figure 1). 

This result is, in general, discontinuous at y = 0. In  order to achieve continuity of 
the pressure and upwash velocity at this point we must take 

klM+ - i ~  
eiax [A+@) Pl(a, 0 + ) + B+(a) P,(a, 0 + )] da 

k l M 0 - i ~  
k lM-  -is 

eiaz[A-(a)P,(a, 0-)+B-(a)P,(a,O-)Ida, ( 3 . 1 3 ~ )  

s =s  k/M.-ia 
k / M +  - i ~  

eiax [A+(a) q ( a ,  0 + ) + B+(a) %(a, 0 + )] da 
k / M -  -k 

. fklMw - i s  

eia"[A-(a)'V,(a, O-)+B-(a)%(a, 0 - ) Ida ,  (3.13b) =s k / M ,  - i s  

where 0 f denote the limits as y+ 0 from above/below. To determine B* (in terms of 
A*) from these equations we must, in general, solve a coupled set of integral equations. 
But when the limiting velocities above and below the shear layer are equal (i.e. when 
M, = M-) these equations are equivalent to the algebraic equations 

B+(a) P,(a, 0 + ) - B-(a) P,(a, 0 - ) = -A+(.) Pl(a, 0 + ) +A-(a) Pl(a, 0 - ) 1 
(3.14) 

B+(a) V,(a, O + ) - B-(a) K(a, O - ) = - A+(a)  K(a, O + ) +A-(a)  'V,(a, O - ) J 
for M, = M-, 

which can be solved for B* to obtain 

(3.15) 

When the velocity profile is symmetric about y = 0 it follows from (3.6) and (3.11) 
that 

Since M'(0) = 0 by construction, (3 .2b )  implies that 



314 M .  E .  Goldstein 

which, in turn, implies that 

P1(a, O + )  : P1(a, 0 - )  : p,(a, O + )  : P,(a, 0- ) 
= Ul(a, O f )  : Ul(a, 0 - ) :  %(a, 0 + )  : G(a,  0 -  ). 

Hence it follows from (3.12) and (3.14) that the relations (3.15) will also ensure that 
the axial velocity Tig will be continuous a t  y = 0 when M+ = M-. When M+ + M- 
the solutions to (3.13) may have enough arbitrariness that we can impose an axial 
velocity continuity requirement but I have not been able to prove this. 

Notice that (3.12) involves only wavenumber components that lie between k/Mmln 
and k/Mmax, where M,, and Mmln are the maximum and minimum Mach numbers of 
the flow. I t  therefore contains only waves travelling in the axial direction with phase 
speeds that lie between the maximum and minimum $ow velocity, so that the waves 
comprising the second term in (3.12) will vanish a t  infinity when the mean flow is 
everywhere subsonic, or more precisely, when the maximum change in the mean flow 
Mach number across the shear layer is less than one. This can be seen by recalling that 
these waves behave like ( 3 . 9 ~ )  a t  infinity and noting that the square root (3.10) is a 
strictly positive imaginary quantity for the range of wavenum bers being considered. 

The most general solution to the linearized gasdynamic equations that consists 
entirely of wavenumbers in the range k/Mm,, < a < k/Mmln can be obtained by adding 
to (3.12) an arbitrary linear combination of the incoming-wave solutions Z, that 
possess wavenumbers in this range. But since the first term in (3.12) goes to zero as 
y -+ f co while, a8 can be seen from (3.10) and the remarks in the paragraph immediately 
following this equation, 2, will become infinite as y + 00 whenever Mmax - Mmin < 1 
(which is the case of primary interest here), the latter solut'ion (i.e. (3.12) plus the 
linear combination of 2,) will also become infinite at infinity and therefore not satisfy 
the boundedness requirement that we intend to impose on the gust solution. The 
supersonic mean flow case is more subtle and will not be pursued here. We merely 
note in passing that the gust will then contain components that do not decay at  
infinity and therefore give rise to the Mach wave radiation first discussed by Phillips 
(1960). The role played by the incident waves will be discussed further in 0 3.3. 

Thus, assuming that M,,, - Mmin, the relative Mach number change across the shear 
layer, is less than one, (3.12) with the B* determined by (3.13) or by (3.15) when 
M+ = M- represents the most general continuoust bounded solution consisting entirely of 
waves with axial phase velocities lying between the maximum and minimum mean j b w  
velocity. It is clear that any convected disturbance (i.e. any disturbance that moves 
downstream with the local mean flow velocity) must comprise all the wavenumbers 
in this range. 

(3.19) 
- The vorticity amplitude 
wg = a q a x  - aiig/ay 

associa.ted with the gust solution (3.12) is given by 
k l J f i  

k l M W  
zs, = (w f ) 'U , ( k /M(Y) ,  Y )  exp [ i W M ( Y ) l  A*(k/M(Y)) +I eZ""A*(a) ~ , ( a ,  y )  da 

k/M* -i€ +I eia5B*:(a) IIJa, y )  da, y 3 0, (3.20) 
klMa - is 

t With the possible exception of the tangential velocity at y = 0 when M+ + M-. 
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where 
n(a, y) = iaV(a, y) - U’(a, y). (3.21) 

The differentiation of the logarithmic term in U, (recall that this solution is a linear 
combination of U, and U, and that U, has a logarithmic singularity a t  yo) will cause 
II, to have a pole at the point yo where a = k/M. But, since the integration contour 
in the second integral in (3.20), which lies below the real axis, must be closed in the 
lower half-plane when x is negative, this pole will not contribute to the asymptotic 
value of the integral as x - f  - co. Hence it follows from the theory of Fourier transforms 
that as long as A*(a) are bounded 

<, = O(ln 1x1/.) as x+--oo (3.22) 
and 

where we have put 

- we = R(y)exp[ikx//M(y)]+O(ln Ixl/s) as x+--oo, 

(3.23) 

Thus as indicated in the introduction, the vorticity w, associated with the gust 
solution (3.12) behaves like the frozen ccjnvected disturbance 

Q(Y 1 exp { - i“0 t - x/Wy )I) (3.24) 

a t  large distances upstream. It is clear from the development that (3.12) has the 
smallest range of wavenumbers of any continuous bounded solution that exhibits 
this behaviour. It therefore corresponds to the definition of the gust solution given 
near the end of 3 2. In  a uniform flow the vorticity is of the form (3.24) a t  all points of 
the flow. But when the flow is non-uniform this behaviour will occur only far upstream. 

The transverse vorticity distribution Q(y) can be specified more or less arbitrarily 
when the flow is uniform and, since we can always select A* in accordance with 
(3.23) for any R, we now see that this is also the case when the flow is non-uniform. 
Thus let f (y) = k/M(y). Thenf(y) has a uniquet inverse qf =f-l in the range y > 0 
and a unique inverse q- = f -l in the range y < 0. Consequently 

Y = q*WM(y)), Y 2 0, (3.25) 

and (3.23) will be satisfied for any R if we define A f ( a )  by 

(3.26) 

Since this determines A* uniquely, it follows from (3.12) and (3.15) that the gust 
solution is itself uniquely d e m i n e d  by specifying the upstream transverse vorticity 
distribution Q(y). 

3.3. Discussion and Jinal results 

The solution to any given problem will be the sum of the gust solution (3.12), which 
is determined by R(y), and a ‘non-gust ’ component which is determined by conditions 
imposed a t  the boundaries of the problem. Although it might at first appear that 

t Since the inverse function is multi-valued on the full range - co < y < 03 we must consider 
separately each of the ranges where it is single valued if we are to write down unambiguous 
formulaa. 
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Q ( y )  represents the upstream distribution [via (3.19), (3.23) and (3.24)] of only the 
gust component of the vorticity field, it is clear that in any problem involving the 
scattering of vortical disturbances, as opposed to incident acoustic waves, the non- 
gust component of the solution will consist only of evanescent waves or outgoing 
cylindrical waves that will also decay a t  infinity. Consequently, only the gust com- 
ponent of the solution will contribute to the upstream vorticity field and !2(y) will 
then represent the transverse distribution of the total upstream vorticity. 

On the other hand, an imposed upstream acoustic field must be composed of the 
incoming-wave solutions 2, whose axial wavenumbers lie in the range where these 
solutions have wavelike behaviour a t  infinity, i.e. in the range where the square root 
(3.10) is real [see remarks in paragraph following (3. lo)]. As we have already indicated, 
this range will not include the wavenumbers that contribute to the gust solution (3.12) 
as long as we restrict our attention to the case where the change in the Mach number 
across the shear layer is less than one. Moreover, it is not hard to show that the solutions 
whose wavenumbers lie outside the wavenumber range in (3.12) will then have zero 
vorticity far upstream, so that Q( y )  will again represent the tranoverse distribution 
of the total upstream vorticity. 

The unbounded 2, solutions (i.e. the solutions that correspond to the wavenumber 
range where the square root (3.10) becomes imaginary) are usually of little interest 
in scattering problems on flow8 that extend to infinity. It should therefore always 
be possible to distinguish the acoustical and vortical solutions in the distant upstream 
region of a subsonic mean flow. 

In  order to  obtain explicit formulae for the gust solution we now restrict our 
attention to the case where M+ = M- = M,. Then substituting (3.15) and (3.26) into 
(3.12) yields 

This can be put into a more concise and revealing form by taking 

for y > 0. 

q*(a) as the inte- 
gration variable (which is possible since each of these quantities is single valued) to 
obtain 

(3.28) 

and dropped the superscripts on 7 since the positive and negative ranges are now 
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determined by the limits of integration. When the mean flow is symmetric it follows 
from (3.17) and (3.18) that 

and in order to  be consistent we must choose the normalization for U, in (3.27) such 

For scattering problems we are primarily interested in the transverse velocity 
that &(k/Jf(v) ,  7) = U,(k /Wq) ,  -7)  when 7 < 0. 

component of (3.27): 

Similar manipulation of (3.2) yields 

where II is defined by (3.21). 
The results of this section are best understood when they are compared with the 

corresponding uniform mean flow formulae of Q 2. These results show that, as in the 
case considered in 0 2, the velocity field is induced by a transverse distribution 

Q(7)exp [iPz/J!f(7) - Wl 
of frozen disturbances that are convected downstream a t  the local mean flow velocity 
and are related to the upstream vorticity distribution. On the other hand, these 
disturbances do not, as in the constant mean flow case, themselves coincide with the 
actual vorticity field but, as we shall show subsequently, are rather related to a certain 
quantity that is composed of the particle displacement as well as the vorticity. The 
vorticity field is now the sum of these convected disturbances and a term that is merely 
induced by these disturbances in the same fashion as the velocity field. Moreover, the 
pressure field, rather than being identically zero, is now also induced by these convected 
disturbances. 

4. Comparison of transversely sheared mean flow solutions with 
uniform flow results 

We have shown that (3.20) and (3.31) bear a considerable resemblance to the 
uniform flow equations (2.4) and (2.5). In  fact, in the limit as M(y) approaches a 
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constant while x remains finitet we can factor eikzlnf out of the integrals and put 
(3.27) and (3.31) into the form 

- 
q 0 ={jj 8,  - vg, uo> - = Ze(y) e i k d M ,  (4.1) 

(4.2) 
where 

and 

with Z,, 2, and l-I given by (3.6), (3.11) and (3.21), respectively. Then eliminating V 
between (3.2a, b )  shows that 

But since the denominator on the right side of this expression vC;ill not, in general, 
vanish as M + k/u 

Consequently, it follows from (4.3) that 
becomes constant, so that p8 x 0 and (2.3) holds. 

will be negligible compared with ue as M 

It follows from (3.2) that 

Then since (3.4b) implies that 

differentiating the second component of (4.3) (i.e. re) with respect to y and comparing 
with the third we find that 0, and re are related to one another by (2.6). It c m  also be 
shown that this relation holds when y < 0. 

Eliminating P between (3.2b, c) yields 

‘V,(lelM(Y),Y) = 0, (4.5) 

(k - a M )  M’V + aV’ 
an- (k - aM)2 U ( a , y )  = i 

Then since M’ will be small and M ( y )  will approach M ( q )  when M approaches a constant 
value, this implies that 

~(~/wl),  Y) x ( W k )  W / M ( 7 ) ,  Y). (4.7) 

If  we allowed 2 to become infinite, the product of z with the variable part of 1 / M ( t )  need 
never be small and we could not treat exp [ i lcz /~M(q)]  as independent of 71. 
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Y 

FIGURE 2. Approach of Mach number profile to a constant 
value needed to ensure uniformity of limit. 

Consequently, it follows from (3.21) and (4.5) that we can interchange the order of 
integration and differentiation in (4.4) to obtain 

where TTe is the second component of (4.3) with 2, and 2, given by (3.6) and (3.11), 
respectively. It can also be shown that this equation holds when y < 0. It is a second- 
order ordinary differential equation for pe that can easily be integrated. Its general 
solution will involve an arbitrary linear combination of the two homogeneous solutions 
e*kulM (and is, in fact, given by the equation immediately following (2.6) with R 
replaced by Re). However, as indicated in $2,  the only solution for which re and c, 
which, as we have just shown, is now related tore by (2.6), will be everywhere continuous 
and bounded is given by (2.7) (with R, of course, replaced by Re). 

We have now established that, in the limit as M becomes constant, the pressure, 
velocity and vorticity do indeed satisfy the relations (2.3)- (2.7) that determine the 
unsteady vortical modes on a uniform flow. Thus as M becomes constant the pressure 
fluctuations of the gust vanish while its velocity and vorticity become purely con- 
vected disturbances whose amplitudes ge, pe and Qe are connected by (2.6) and (2.7). 
Equation (2.6), of course, implies that the velocity is solenoidal. 

On the other hand, (4.4) shows that the vorticity amplitude Re that appears in these 
relations will not be the same as the specified upstream vorticity amplitude R(y)  
unless IT + 0 as M becomes constant, which, as we shall show, will usually not occur. 
This non-uniform behaviour is related to the discontinuous change in the asymptotic 
behaviour of the velocity fluctuations. Thus (3.22) shows that 4, will always decay as 
x+-m if M is non-constant while (4.1) shows that 0, will never decay as x+-m 
when M is constant. Consequently the order of taking the limits x+ - 03 and M+ con- 
stant cannot be interchanged. In  view of this behaviour it is not surprising that 

lim lim sj, lim lim z,. 
x-f- m M-onst. M-const. x-e- 00 

This non-uniform limit causes a certain amount of ambiguity concerning the correct 
method of specifying the amplitude of the incident gust on a constant mean flow. 
After all, no real flow is ever perfectly constant and the above results indicate that 
an incident gust may be easily distorted by even a very small non-uniformity. It 
therefore seems worthwhile to determine when we can expect fie to  approach f i ( y ) .  



3 20 M .  E .  Goldstein 

This is done in appendix B, where it is shown that Q, will approach i2 as M becomes 
constant if we require that the radius of curvature of the mean velocity profile simul- 
taneously becomes large relative to a wavelength in the sense that 

as M becomes constant. The approach to the constant mean velocity limit must 
therefore occur in the manner indicated in figure 2. It is also shown in appendix B 
that (3.30) will reduce directly to (2.4a) with given by (2.7) when the limit is 
approached in this fashion. 

5. Further interpretation of results 
As we have already indicated, there are no purely convected physical disturbances 

in a transversely sheared mean flaw as there are when the Aow is uniform (unless, as 
shown by Mohring (1976), the mean shear is constant). However, there is a quantity 
related to the vorticity which is convected by the mean flow. Thus, for the small 
amplitude, constant mean density two-dimensional motion being considered, the 
linearized vorticity equation becomes 

where 

and wo = -coM' 
in the usual way 

this becomes 

is the mean vorticity. Upon introducing the particle displacement 6 

v = Do[/Dt, (5.2) 
by 

Do u */Dt = 0, 
where 

w * E w + n r ' f p 0  co - M"CO [. (5.3) 

Consequently w* is simply convected by the mean flow. 
We again restrict the discussion to a single harmonic component of the unsteady 

motion. Then the axial Fourier transform of w* (i.e. the Fourier transform with respect 
to x) is 

where Il is defined by (3.21). But (3.2) shows that k-aM times this quantity will 
equal zero and therefore that (5.4) will equal zero a t  all points where k-uM 9 0. 
Consequently, no regular (i.e. non-distributional) solution to the linearized gas- 
dynamic equations will contribute to w * .  (But since ( k  - u M )  6(k - a M )  = 0 this does 
not rule out the possibility of the distributional solution contributing to w * . )  

Now the solution, say C c i w t  = {2)e-awt, 8e-iwt, Tie-iwt}, to any boundary-value 
problem will, in general, consist of a regular solution plus the distributiona,l solution 

e-irdt defined in (3.12). Then 
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where 

and 

i - -X 

Plate 

Incident 
vorticity 

FreoRE 3. Geometry for scattering problem. 

On the other hand 5 is defined by (5.2) only to within an arbitrary function of the form 
f(y) exp [i(kx/M - wt) ] .  Its definition can be made unique by using the inverse 

of the operator on the right side of (5 .6)  to define E .  Then on inserting (3.31) and the 
appropriate components of (3.27) into (5.5), we find that 

W* = fi(y)exp [ikz/M(y)].  

Consequently G* is just the convected portion of the gust vorticity amplitude Gw. 
More important, w* is precisely the convected disturbance that was shown in $3.3 
to induce the entire unsteady flow field of the gust ! It is also worth noting [see remarks 
following (3.26)] that G-+W,+Tj* as X+-CQ. 

6. Scattering of a gust by a half-plane 
6.1. Construction of solution 

In order to illustrate the ideas of the previous sections we shall consider the problem 
of a gust incident on a semi-infinite plate in a subsonic sheared mean flow as shown in 
figure 3. We suppose that the plate is located at y = 0 (with its leading edge a t  x = 0) 
and that the mean flow is symmetric about y = 0. The unsteady motion is assumed 
to result from an upstream convected vorticity distribution Q(y)  eikxlM(v), which we 
shall suppose also to  be symmetric with respect to y = 0. The solution 4 = (Ti, V ,  E} 
to the problem is equal to the sum of the gust solution (3.27) a.nd a scattered part 
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%, = { j ia ,Va, i ia}  which has outgoing-wave behaviour at infinity (i.e. it satisfies a 
radiation condition) and has an upwash component at the plate that is equal and 
opposite to Vg. In  view of the symmetry of the problem we can write this solution in 
the form 

( 6 . 1 ~ )  

(6.lb) 

where as before the subscript o is used to  denote the solution with outgoing wave 
behaviour at infinity. The boundary conditions on y = 0 are ji, = 0 for x < 0 and 
8, = -ijg for x > 0, where Vff is given by (3.30). Consequently, the problem amounts 
to  solving the dual integral equations 

m 

eiaz,.4(a)e(a,O+)da = 0, x < 0, 
- m  

eia"A(a)E(a,O+)da = -ijff, x > 0. rm 
This can be accomplished by using the Wiener-Hopf technique to obtain (see Noble 
1958, pp. 220ff.) 

where GJa) denote analytic functions in the upper/lower half a plane that vanish at  
infinity and ~,.(a) denote non-zero analytic functions in the upper/lower half-plane 
with algebraic behaviour a t  3nfinity. They are uniquely determined (to within an 
irrelevant multiplicative constant) by their behaviour along the real axis, which is 
given by 

A(a)  = G-(a)/P,(a, 0 + ) ~ ( a ) ,  (6.2) 

I m a  = 0, -m < Rea < co, (6.3) 
and 

where 
G-(a)-G+(a) = K+(a)F-(a), Im a = 0, -m c Rea  < m, (6.4) 

where we have used ( 3 . 2 ~ )  to obtain the right-hand part of (6.3) and where as usual 
we suppose that k has a small positive imaginary part that will be put equal to zero 
a t  the end of the analysis. 

When a is symmetric (3.29) and (3.30) imply 
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where we have put 

and reinserted the original variable of integration. Inserting (6.6) into (6.5) and carry- 
ing out the integration with respect to x yields 

Hence it follows from the Plemelj formulae (Woods 1961) that 

P-W = F+@) - [H(a - k/Mo) - H ( a  - ~/MUJl Q(r(a)) +)dr(a)/da, 

where H still denotes the Heaviside function and F+ is analytic and bounded at infinity 
in the upper half a plane. Inserting this into (6 .4 )  yields 

where K+(a) = F+(a) ~ + ( a )  + G+(a) is an analytic function in the upper half a plane 
with algebraic behaviour at infinity. Applying the Plemelj formulae (Woods 1961) to 
this result therefore yields 

where we have put 

and after returning to 7 as the variable of integration we have dropped the notation 
lim since this limit is already accounted for by the fact that k is assumed to have a 

small positive imaginary part that will be put equal to zero at the end of the analysis. 
Inserting this together with (6 .2)  into (6.1) and using (6.3) shows that p,(x,ylq), 

the pressure fluctuation at the point (2, y )  due to the incident vorticity at the height 
7 above the plate, is given by 

d - 4  + 

Naturally 

6.2.  Acoustic radiation 
A t  large distances from the plate (i.e. for (x, y) in the radiation field) j i+=pa,  

m a ,  JYl )  PoCoC(a) exp {i[(k:-aMUJ2 - a21~lYll 
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and the method of stationary phase (Carrier, Brook & Pearson 1966, p. 274) caq 
be used to evaluate the integral in (6.8). For simplicity we suppose that the medium 
is at rest a t  infinity (i.e. that M, = 0). Then (6.8) becomes 

where we have introduced the cylindrical co-ordinates r = (x2 + y2)* and 13 = sin-' y /r .  
The terms involving r are just the usual multiplicative factors that occur in the far- 
field pressure owing to any two-dimensional source. It is emy to see from (6.6) and (6.7) 
that the quantity Q(7) & ( r ] )  is simply the amplitude of the upwash velocity induced 
a t  the plate by the portion of the incident vorticity that is located a t  the height r] 

above the plate. 

6.3. Low frequency solution 
In  order to interpret the remaining factors in (6.11) it is necessary to solve the ordinary 
differential equations for po and V ,  and factorize (6.3) to determine K+. We can obtain 
simple explicit formulae by restricting our attention to the long-wavelength limit 
k6 < 1 (where 6 is the characteristic width of the shear layer) and supposing that r ]  
is in the near field, i.e. r] = O(6). Then it is easy to verify that when y = O(6) the 
asymptotic solutions Pl, V, and Ul of (3.2) that have the behaviour (3.4) are 

(6.12) 

where K E a/k  = O(1) and the function r]+ is defined immediately above (3.25). On 
the other hand, it follows from (3.8) that the outgoing-wave solution P,(a, y )  must be 
of the form 

s -- 86% Y )  - ~o+IcBo+(Ao+Ic.4,)  ( i - ~ M ) ~ d y + O ( k ~ )  
Po co 

for y = O(6) while for ky = O( 1 )  its asymptotic representation is 

p,o = Coexp{-[K2-(l-tcMw)2])ky)+O(k) for Icy = O(1). (6.13) 
POCO 

Matching these inner and outer expansions in the overlap region (see Cole 1968, 
pp. 7-13) we find that co = C,, A ,  = 0 and A ,  = - CO[~2  - (1  - K M , , ) ~ ] * / ( ~ -  KM,)~. 
And, since we have set M, = 0, it follows from (3.2a) that 

and 

when y = O(S). 

8 ( a ,  Y)/Po co = Qo + O(k)  

K(a, y )  = iCO(~' - 1)) (1 - K M )  + O(k)  

Hence it follows from (6.3) that 

K-(a) /K+(a)  = i(a-k)~(a+k)*(k-aMo)/pocok~, 
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FIGURE 4. Branch cuts for square root in complex a plane. 

where the branch cut of the square root is as shown in figure 4. Consequently 

~ + ( a )  = (a + k)-d, 

and, since comparison of (6.13) and (6.10) shows that C(a) = C,, (6.11) becomes 

where in view of (6.7) 

6.4. Interpretation of results 

The fact that the source is embedded in a moving medium is reflected by the appear- 
ance of the two Doppler factors 1 - M ( 7 )  cos 8 and 1 -M,cos8. The first of these 
depends on the mean flow Mach number a t  the vertical position of the gust, which can, 
to a first approximation, be thought of as the convection velocity of the gust. The 
second depends on the Mach number at the position of the plate. The remaining part 
of the directivity pattern is determined by the factor cos 88. 

It is instructive to compare (6.14) with the sound field produced by a non-compact 
free-space dipole in a non-moving medium whose strength is given by the pressure 
fluctuations that would be produced at  the plate if it  were placed in a uniform flow 
and subjected to a convected gust. This is the type of model that one might arrive a t  
if one attempted to solve the problem of this section by using the ' acoustic analogy ' 
approach (Lighthill 1952; Curle 1955). It involves the assumption that the gust will 
generate surface pressure fluctuations as if it were embedded in a completely uniform 
flow and that these surface pressure fluctuations will then generate the same sound 
field as they would produce in a stationary medium. Thus the amplitude of the pressure 
fluctuation a t  the point (x, y) due to the stationary medium acoustic dipole produced 
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by a two-dimensional harmonic surface pressure fluctuation p ( x ,  y) e-iwt acting on the 
plate is - 1 8  m eik? 

F ( x ,  y)  = -- - 1 O0 F(x', 0) 1- 2naY 0 
dz'dx', 

where 
R = [ ( x - x ' ) ~ + Y ~ + ( z - z ' ) ~ ] ~ .  

The inner integral can be expressed in terms of a Hankel function, which can be 
expanded for large kr to obtain 

1 2ni fiksine 
p ( x ,  y) N - ( F )  JOm F(x', 0) exp [ilc(r - x' cos e)] dx' &S kr -+ 00. (6.15) 

On the other hand, the amplitude of the surface pressure fluctuations that would be 
produced if the plate were placed in a uniform flow with Mach number Me and subjected 
to a frozen harmonic gust vo exp {ik[(x/Me) - co t ] }  is (Goldstein 1976, p. 138) 

F ( x ,  0) - - iMevoeFP [ ikx / ( l  +Me)] 
P O C O  [ni( 1 +Me) kx/Me]4 

Inserting this into (6.15) and carrying out the integration yields 

Since i2Q is the upwash velocity amplitude a t  the plate aasociated with the gust and 
since (1  - cos 0)-4 = 23 cos gelsin 0, it is clear that this result agrees with (6.14) as the 
mean flow Mach number becomes small. (Of course, for reasons given in 5 3 we cannot 
expect the relation between the upwash velocity and incident vorticity to be the same.) 
For finite Mach numbers the convection effects associated with the gust and the mean 
flow cause the two results to differ. 

7. Concluding remarks 
The general behaviour of an unsteady gust in a transversely sheared mean flow is 

studied and its connexion with the frozen disturbances that occur on a uniform flow 
is pointed out. The general ideas are illustrated by considering the scattering of a 
gust by a semi-infinite plate in a non-uniform mean flow. Simple formulae are obtained 
for the far-field behaviour of the resulting acoustic radiation. They &re found to 
exhibit some interesting convective effects. 

Appendix A. Representation of solutions for symmetric velocity profiles 
In  this appendix we show that the solution (3.3) can be written in the form (3.7) 

wheh M (  -y) = M(y). Thus, if P (a ,y ) ,  V(a,y) and U(a,y)  satisfy (3.21, P(a, -y), 
- V(a ,  -y)  and V(a,  -y)  will also be solutions to these equations, and, since P,, V, 
and U, contain no logarithmic terms, neither will Pl(a, - y), -%(a, - y) and Ul(a, - y). 
Then since any solution can be expressed as a linear combination of any two linearly 
independent solutions and since {I?,(@, - y), - K(a, - y), U,(a, - y)} is a solution which 
contains no logarithmic terms, it follows that it must be equal to a constant multiple 
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of 2,. But, since 2, is only defined to  within a constant multiple, it follows that we can 
write 

z,(a,Y) = (P,(a, IYI)? (sgny)Ua, IYI), Ul(G IYI)>* 

Appendix B. Determination of condition for uniform approach to 
constant velocity limit 

Q(y) as M becomes uniform. It was shown in 0 4 that this will occur if 
In  this appendix we establish a condition that will ensure that .Re will approach 

n ( ~ / M ( 7 ) ,  Y) = (ww/9) W / M ( 7 ) 9  Y) - U ' ( ~ / M ( 7 ) , Y )  ( B  1) 

approaches zero as M becomes uniform. In  order to determine when this will happen, 
notice that the argument used to obtain (4.7) from (4.6) also implies that 

U ' ( ~ / M ( r ] ) ,  Y) = ( W k )  ~ " ( ~ / M ( r ) ,  Y) 
as M becomes constant. Consequently 

as M becomes constant. This is essentially equivdent to requiring that V(a, y) ap- 
proaches a solution of the constant mean velocity reduced wave equation 

VTn+[(k-aM)2-a2]  v = 0 

uniformly in a as M becomes constant. However, this will not usually happen. Thus 
elimination of P and U between ( 3 . 2 ~ - c )  shows that V(a,  y) satisfies the equation 

a M ' V + ( k - a M )  V' ] + ( k - a M )  V = 0.  [ (k - aM)a  - aa 

Consequently V ( k / M ( v ) ,  y) satisfies the equation 

2M'(AM)2 2M'2AM +AM [ k ] 2 [ ( A M ) 2 -  13 
AM '" + (AM)2 - 1 v f+ (M"+(AM)2-1  M ( 7 )  

where AM = M ( 7 )  - M ( y ) .  As M becomes uniform, M', AM,  M" --f 0 and this becomes 

The right side of ( B 2 )  will therefore not vanish unless IM"Ma(7)/AMk21 < 1. This 
inequality can certainly not be satisfied at every point since AM = 0 when y = 7 
whereas M"(7) will generally be finite there. But, for y close to 7, M"(y) E M"(7) and 
AM w M'(7) (7 - y) if M'(7) + 0. Thus, if 

then M"Mz(7)/AMk w - E / Z ,  

where 
z = (Y -7) ww/), 
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and (R 5 )  becomes 

For 2 = O( 1) this equation possesses the solution 

d2V/dZ2 - (1 - €/Z) V = 0. 

V = C, sinh 2 + C, cosh 2, 

while for small values of Z we can seek: solution in the usual way (Cole 1968, pp. 
7-13) by introducing the inner variable Z = Z/p(e), /3 = O(E) ,  to obtain 

But since the second term will be negligible compare$ with the first for every allowable 
choice of p, the inner solution must be P = a, + a, 2. We must therefore take a, = 0 
in the solution V, that vanishes a t  y = y, while matching the inner and outer solutions 
shows that a2 = PC,. Consequently, 

V,(k/Jf(y),?/) = C,sgnysinh (21 (B 9) 

is a uniformly valid solution to (B 4) in the range 0 < 2 < O(1) as AM,  s+O. And, 
since AM is required to vanish, this solution is also valid for 2 8 1 .  

Similarly we can show that 

‘V,(k/M(T),Y) = Cosgnyexp ( -  lylk/M) (B 10) 

is a uniformly valid outgoing-wave solution to  (B 4). Thus both nl(k/M(y),y) and 
n0(k/M(y), y) will go to zero and 0, will approach 0 a.s AM-+ 0, provided that we 
also require that c+- 0. Consequently, S2, will represent the true upstream vorticity 
as M becomes constant if we require that the radius of curvature of the mean velocity 
profile simultaneously becomes large relative to a wavelength in the sense dictated 

It is instructive to show that, a t  least in t,his limit, (3.30) will indeed reduce directly 
to  ( 2 . 4 ~ )  with given by (2.7). This will be accomplished if we can show that the 
second component of (4.3) reduces to (2.7). For simplicity we consider the case of a 
symmetric velocity profile. Then on inserting (B 9) and (I3 10) into (4.7) we find 
U,(k/M(y),y) N iC, rosh 121 and U,(k/M(q),y) N -iC,exp ( -  kly(/M). Inserting these 
results into the symmetric velocity profile formula (3.2) yields 

by (B 6). 

Then inserting this together with the appropriate formulae for U and V into the 
second component of (4.3) shows that this expression does indeed reduce to (2.7). 
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